
Talking About Concerns . . .
James D. Herbsleb

School of Computer Science
Carnegie Mellon University

What is Modularity?

•  Thanks, Mary!
•  Thanks, Dick!

Why Modularity?

•  Software modularity does not matter
•  . . . at all
•  Except . . .
•  To the extent it modularizes work

•  Work modularity aids human
understanding

•  Work modularity simplifies coordinating
people and teams

Parnas:
Expected Benefits of Modularity
•  Reduce need for coordination

•  “separate groups would work on each module with
little need for communication”

•  Simplify comprehension
•  “it should be possible to study the system one

module at a time”
•  These effects lower the cost of change

•  “it should be possible to make drastic changes to
one module without a need to change others”

Parnas, D. L. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, 15, 12 (1972), 1053-1058, p. 1054.

Vision . . .

•  “a vivid mental image; ‘he had a vision of his
own death’” *

•  “an Explanation of Life Founded upon the
Writings of Giraldus and upon Certain
Doctrines Attributed to Kusta Ben Luka” *

•  “a thought, concept, or object formed by the
imagination” **

•  “direct mystical awareness of the
supernatural“ **

*wordnetweb.princeton.edu/perl/webwn
**Merriam-Webster Dictionary

6

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Cognition and
coordination problems

7

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Cognition and
coordination problems Traditional

modularity

8

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Aspects

Cognition and
coordination problems

9

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

???

Cognition and
coordination problems

10

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Cognition and
coordination problems Traditional

modularity

Consensus view at Recife

11

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Cognition and
coordination problems Aspects

Consensus view at Recife

12

Proportion of dependencies
that cross-cut

Number of language-based
modularizing mechanisms

100%

Cognition and
coordination problems

My view (mildly exaggerated)

Dystopian vision:

Modularity alone will never fix the problem.

13

Approaching the Gray Area . . .
•  Organizational design, work assignment,

and tools set up to bring the right
dependencies to the attention of the right
people so they can act appropriately

14

Two Examples . . .
•  Organizational design and work

assignment
– Lessons from feature-driven development

•  Using information from the environment
– Learning from human activity

15

Feature-Driven Development
•  Unit of functionality in end-user terms
•  Feature is the unit of development

managed by a project
•  Features tend to cut across traditional

software entities
•  Work often overseen by “feature

manager”
•  Developers associated with component,

assigned to work on particular features

16

The Study
•  Setting

–  Software for automotive navigation system
–  1195 features
–  32 months of activity
–  179 engineers in 13 teams
–  1.5 M LOC, 6789 source files, 107 architectural

components
–  Organization had 5 years of prior experience with

feature-driven development
•  Architects prepare feature development

specification

 Model I Model II Model III Model IV

Time 0.992* 0.990* 0.990* 0.989*
Average Component Experience (log) 0.487* 0.984+ 0.741+ 0.754

Changed LOCs 1.021 1.089 1.063
Concentration of Changed LOCs 1.045 1.028 1.036
Number of Dependencies (log) 1.107* 1.091* 1.091*

Concentration of Number of Dependencies 1.032** 1.046** 1.078**
Number of Groups 1.101* 1.051*
GSD 13.924** 14.964**

Feature Owner Belongs to Highly Changed Component 0.789 0.396
Feature Owner Belongs to Highly Coupled Component 0.839** 0.819**
Concentration of Changed LOCs X F. Owner Belongs to Highly Changed Component 1.032

Concentration of Number of Dependencies X F. Owner Belongs to Highly Coupled Comp. 0.977**
GSD X Feature Owner Belongs to Highly Changed Component 3.736
GSD X Feature Owner Belongs to Highly Coupled Component 0.926

Deviance of the Model 755.2 639.0 458.4 412.2
Deviance Explained 11.7% 25.3% 46.4% 51.8%
(+ p < 0.1; * p < 0.05; ** p < 0.01)

Odds Ratios from Regression Assessing Factors Driving Feature Integration Failures

From Cataldo, M. & Herbsleb, J.D. (2011). Factors Leading to Integration Failures in Global Feature-Oriented Development: An
Empirical Analysis. Proceedings, International Conference on Software Engineering (to appear).

What Causes Integration Failure?

From Cataldo, M. & Herbsleb, J.D. (2011). Factors Leading to Integration Failures in Global Feature-Oriented Development: An
Empirical Analysis. Proceedings, International Conference on Software Engineering (to appear).

Ownership Matters!

 Model I Model II Model II

Time 0.981** 0.971** 0.964*
Failures in the Past 5 Weeks 2.127** 1.125* 1.011*

Changed LOCs 1.371** 1.201** 1.203**
Average Component Experience (log) 0.837+ 0.997 0.908
Number of Groups 3.006** 4.037** 6.345**

Overlap Among Groups 0.943** 0.919** 0.901**
Same Feature Owner 0.876** 0.871** 0.852**
GSD 4.501** 2.509** 4.895**

Number of Cross-Feature Dependencies (log) 2.911** 4.938**
Number of Groups X Number of Cross-Feature Dependencies 0.607
GSD X Number of Cross-Feature Dependencies 0.799**

Deviance of the Model 12873.9 9413.1 8043.1
Deviance Explained 33.4% 51.3% 58.4%
(+ p < 0.1; * p < 0.05; ** p < 0.01)

Odds Ratios from Regression Assessing the Impact of Cross-Feature Interactions on Integration Failures

From Cataldo, M. & Herbsleb, J.D. (2011). Factors Leading to Integration Failures in Global Feature-Oriented Development: An
Empirical Analysis. Proceedings, International Conference on Software Engineering (to appear).

Destructive Feature Interaction

From Cataldo, M. & Herbsleb, J.D. (2011). Factors Leading to Integration Failures in Global Feature-Oriented Development: An
Empirical Analysis. Proceedings, International Conference on Software Engineering (to appear).

Co-location Doesn’t Scale

Broader Lessons

•  Organizational arrangements matter!
•  Effects can be quite large
•  Effects often are not commonsensical

Inferring Dependencies from
Traces of Human Activity

•  Prior work
•  Use files changed together as measure of

dependencies
•  Can generate a measure of coordination

requirements
•  Validated in a number of settings

•  Can we generalize from “files changed
together” to “entities discussed together”?

A Brief Digression/Analogy

Text Analysis: Field Robotics

•  Project
•  Lunar X Prize competition

Text Analysis: Field Robotics

•  Project
•  Lunar X Prize competition

•  No automatically collected version or
change data

•  Constantly shifting component
boundaries and interfaces

•  Can we use text analysis to derive
dependencies?

Steps

•  Collected data
•  25 all-hands meetings
•  About 10,000 words each

•  Developed code book
•  6 field robotics articles

Code Book

Steps

•  Collected data
•  25 all-hands meetings
•  About 10,000 words each

•  Developed code book
•  6 field robotics articles

•  Manual coding of decision discussions
•  Tested inter-rater reliability

•  QAP correlations .80

Text Pre-Processing

Steps

•  Collected data
•  25 all-hands meetings
•  About 10,000 words each

•  Developed code book
•  6 field robotics articles

•  Manual coding of decision discussions
•  Tested inter-rater reliability

•  QAP correlations .80

•  Created thesaurus

Link Identification

•  Co-occurrence of terms
•  Human coding: same decision
•  Selected sliding window size

•  Size 15 had best agreement with hand coding
•  Threshold established

•  QAP correlations comparable to human-
human agreement (~.8)

•  Sets of links based on topics

Optics
External relations

Structure

Sensors
Planning software

Requirements

Mission
specific

effectors

Mobility effectors

Perception software

Communications

Testing

Thermal

Structure Power

Mission specific
effectors

Thermal models

Structural
models

Thermal system

Prototype
fabrication

Avionics
Mission operations

Mission-specific effectors

Propulsion
Power

Thermal system

Lander
Launch vehicle

Mobility effectors

Perception software

Shared/general computing

Prototype fabrication

Planning software

Structure

Concluding Vision

•  The gray area – work that cross-cuts
language constructs – is here to stay

•  Use organizational tactics
•  Use computations over artifacts generated by

development activities
•  Explore new data sources, including

documents and conversation
•  Activities reveal knowledge
•  Analysis can often make it actionable

