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ABSTRACT 
Research aimed at understanding and addressing coordination 
breakdowns experienced in global software development (GSD) 
projects at Lucent Technologies took a path from open-ended 
qualitative exploratory studies to quantitative studies with a tight 
focus on a key problem – delay – and its causes. Rather than being 
directly associated with delay, multi-site work items involved 
more people than comparable same-site work items, and the 
number of people was a powerful predictor of delay. To 
counteract this, we developed and deployed tools and practices to 
support more effective communication and expertise location. 
After conducting two case studies of open source development, an 
extreme form of GSD, we realized that many tools and practices 
could be effective for multi-site work, but none seemed to work 
under all conditions. To achieve deeper insight, we developed and 
tested our Socio-Technical Theory of Coordination (STTC) in 
which the dependencies among engineering decisions are seen as 
defining a constraint satisfaction problem that the organization 
can solve in a variety of ways. I conclude by explaining how we 
applied these ideas to transparent development environments, then 
sketch important open research questions. 
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1. INTRODUCTION 
Coordination has always been one of the fundamental problems of 
software engineering: if the work of individuals in teams and 
organizations does not mesh in just the right way, the product will 
not work as intended. This is true of any product, but the difficulty 
seems greater with software, for the reasons that Brooks pointed 
long ago [1] – especially its invisibility and constant change.  

Coordination becomes particularly challenging – and interesting 
as a subject of study – when organizational forms morph, evolve, 

or innovate.  When people organize in a habitual, consistent way, 
for example, in collocated teams, it is easy to overlook day-to-day 
coordination mechanisms that are simply taken for granted. It is 
easy to see the importance of things such as meetings of various 
flavors, processes, methods, and architectural separation, which 
have long been studied. Other, subtler mechanisms such as 
informal communication, practices, habits, and shared mental 
models are often only made visible by their absence.   

Very interesting – and often disturbing – things happen when an 
organization is geographically split apart.  Much can be learned 
by observing the mayhem that often ensues when organizations 
are distributed, and much is revealed about what must have been 
happening in the collocated case that keeps such chaos more or 
less at bay. Adding new tools and practices in these novel 
organizational contexts, and seeing how the work is impacted, 
also helps to deepen our understanding of what coordination is 
and how to achieve it. 

In this paper, I summarize two decades of research that colleagues 
and I have carried out to understand and sometimes to facilitate 
how work is carried out via novel and evolving organizational 
forms, driven by factors such as geographic distribution, 
collaboration in open source project communities, and open 
ecosystems. 

The story begins with qualitative studies that throw out a wide net 
in order to understand the experience and difficulties of global 
software development (GSD) – teams operating across 
geographic, time zone, national, and cultural barriers.  The focus 
shifts to quantitative studies to validate qualitative results and take 
a close look at one of the primary difficulties that surfaced from 
early results – the developers’ experience that multi-site work 
takes much longer than comparable work at a single site.  This 
leads in turn to a focus on finding and engaging the right people, 
the specific problem our quantitative results pointed to [2].  

These empirical results guided our efforts to find solutions, as we 
developed resources and tools to assist in the development 
process, and evaluated them in situ.  In particular, we developed 
an early chat tool [3, 4], an expertise location tool [5], descriptions 
of practices that organizations had found helpful [6, 7], and 
organizational models describing various ways to distribute work 
across sites along with their strengths, weaknesses, and criteria for 
when each is appropriate [8].   

Another organizational form – open source development projects 
– caught our attention during this period.  It appeared to us to be 
an extreme form of geographically distributed development, 
loosely and informally organized; yet it appeared to be free from 
many of the problems we observed in industry.  We performed 
two case studies of very different communities, Apache and 
Mozilla, to try to understand how this new form successfully 
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accomplished development work [9].  In addition to findings 
about how the work was performed, the quality of the code, and 
the timeliness of support, we developed a number of hypotheses 
that have been tested in subsequent work. 

To try to make sense of the wealth of results coming from the 
great variety of approaches to software development, and the 
varied success they achieved, we formulated a socio-technical 
theory of coordination [10, 11]. In essence, it views each 
development project as posing a particular constraint satisfaction 
problem that an organization must solve.  I summarize several 
studies that serve as tests of this theory, and sketch out research 
questions to explore the theory and the phenomenon of 
coordination more comprehensively. 

Finally, I will discuss our recent work on what is rapidly 
becoming a dominant development paradigm, ecosystem-based 
development.  Unlike the individual open source projects, 
ecosystem-based development characteristically has large 
numbers of highly interdependent projects that must continuously 
coordinate.  Transparent environments help developers to cope 
both with the scale and decentralized organizational structure, in 
order to take advantage of the tremendous resource pool of 
libraries, frameworks, and other code available in these 
environments. 1 

2. PROBLEMS OF GSD 
Projects in Lucent Technologies experiencing conflict, 
misunderstandings, missed schedules, and technical issues of 
many kinds provided business motivation for the Bell Labs 
Collaboratory, a research project on GSD.  Although researchers 
were beginning to understand why “Distance Matters,” [12], the 
symptoms of dysfunction still presented a puzzle. Lucent 
(formerly AT&T) had been producing highly reliable telephony 
products for many years, yet it seemed that spreading 
development efforts across sites was shockingly disruptive.  More 
or less the same technical work as in the past, highly qualified 
people, adequate budgets, yet an unprecedented level of problems.  
In the rest of this section, I describe our empirical studies and 
their increasingly sharp focus as our results began to point to 
delay and its causes in the difficulties in finding and engaging the 
right people across sites.   

2.1 What’s Going on Here?  
Our first efforts were to initiate a qualitative, open-ended study 
designed to understand why things were coming off the rails.  We 
chose two sites to work with, and visited each with the research 
team to introduce ourselves and to kick off qualitative data 
collection in the form of interviews with developers, managers, 
and executives, eventually expanding our scope into a qualitative 
study of the disastrous first release of the software for the 
organization’s primary product [6, 7].  Based on some initial 
interviews and conversations with participants, we focused on the 
integration phase, where the problems most visibly burst into the 
open. We developed a rich set of findings detailing the ways in 
which failures of communication, differing assumptions, 
misunderstandings, mistrust, incompatible tools and environments 

                                                                    
1 I focus here very egocentrically on the work that colleagues and 

I have done.  There is, of course, a much larger literature full of 
major contributions by others, but space prohibits reviewing it 
here.  A more comprehensive review is in preparation. 

 

led to incompatible actions across the sites and major delays as 
the problems are identified and fixed.   

Fundamental to the problems were a lack of awareness about who 
knows what, is responsible for what, and is doing what across the 
sites, along with the near-total absence of regular informal 
communication which could unearth the “unknown unknowns” of 
key information one doesn’t know one lacks. We also noted how 
even limited face to face contact seemed to counteract these 
problems, allowing subsequent distributed work to proceed more 
fluidly. This led to a number of recommendations about 
communication practices, architectural separation, assigning a 
liaison role, and managing uncertainty. 

2.2 How to Organize? 
Recognizing that different product groups within the company 
seemed to manage GSD rather differently, we expanded on this 
qualitative work by visiting and conducting interviews and artifact 
analysis of six different geographically distributed projects [8].  
From this work, we identified four different organizational models 
that projects seemed to be using to distribute work across sites, 
identifying the benefits, problems, and typical coordination 
mechanisms for each model.  The models were distinguished 
based on the principle by which they separated the development 
work across sites:  by component, by process step, by functional 
area of expertise, or by core versus customization work.  No 
model provided a “best” overall solution, nor did any appear in 
pure form. But each appeared to have some contextual conditions 
that favored and others that argued against its use. 

For example, one strategy involved separating a product into its 
core functionality, developed and maintained at a large, central 
site, and customization centers around the world located near 
important customers.  This strategy only worked when this style 
of modularization made technical sense, and when appropriate 
development resources were available in the right locations.  It 
had the advantage of giving full technical responsibility for the 
largest and most complex component to a single organization that 
took responsibility for its maintenance and integrity.  It also 
allowed the customization teams to get to know the customers 
well and gain a deep understanding of their requirements.  It had 
several significant problems, however, as customization teams felt 
ignored by the core developers, who tended to make changes with 
little regard to how they would impact each custom project.  
Expertise in the core technology was sparse in the customization 
sites, and they had difficulty getting sufficient attention from the 
core to ask questions and get their problems solved. 

2.3 Distance, Delay, and Social Networks 
One of the most striking results from our qualitative work was the 
consistency with which our participants reported how GSD 
seemed to result in substantial and sometimes crippling delay in 
development.  We designed a set of studies to get a better handle 
on the extent and possible causes of delay [2, 13, 14].  Our 
approach was twofold.  First, we took advantage of the fact that 
all development work in the company we worked for was 
undertaken pursuant to a modification request (MR).  By looking 
at the geographic location of each person associated with the MR, 
we could distinguish work that was distributed across sites from 
work that occurred all at a single site.  We also developed and 
deployed a survey instrument that assessed communication 
patterns and social networks within and across sites.   

We expected that GSD would take somewhat longer than 
collocated work, but we were taken aback by the magnitude of the 
difference we observed.  On average, a work item that had 
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participants from more than one site took about 2.5 times as long 
to complete. Fitting a graphical model, we statistically controlled 
for a number of factors that could have produced spurious results 
– for example, the size and diffusion (i.e., number of changes and 
number of files changed) of same site versus multiple site work 
items. Such differences in the work itself could not account for the 
delay we observed.  We were also surprised by the consistency of 
this figure – data taken from two different Lucent development 
organizations exhibited almost precisely the same ratio.  Data 
from our survey in which we asked (among many other things) if 
developers had recently experienced a delay and how long it took 
to resolve, gave us nearly the identical figure of intervals 2.5 
times as long for delays involving multiple sites.   

Digging in to possible explanations for this dramatic difference 
revealed further surprises.  Most unexpectedly, our model showed 
no direct relationship between the number of sites and how long 
the work took.  The effect we were observing was a mediated 
relationship involving the number of people involved in the work 
item. Distributed work items had a strong tendency to involve 
more people, and the number of people was a very strong 
predictor of how long it would take.  Returning to our qualitative 
data from our previous studies, there were several possibilities, all 
based on lack of knowledge of expertise and current workloads, 
which could explain this connection. The MR owner, for example, 
might assign work incorrectly at another site, leading to additional 
assignments.  Or perhaps the first assignee had expertise to do 
only part of the work, again leading to additional assignments.  
Our prior research [6, 8] suggested that knowing who to contact 
about what, the difficulty of initiating communication, and issues 
about the effectiveness of cross-site communication could all play 
a role.   

In addition to this analysis of archival data to assess the extent and 
causes of delay issues, we conducted two surveys of one 
distributed development organization in order to better understand 
social networks and the frequency and intensity of interaction 
across sites as compared to within a single site. Confirming most 
of our hypotheses, developers communicated with many fewer 
people at other sites than at their home site, and communication 
was much less frequent. Our participants also found it much more 
difficult to identify and communicate with appropriate experts 
across sites, and overall received much less information from 
them. Moreover, cross-site colleagues were much less likely to 
perceive themselves as part of the same team, or to share goals.  

3. GSD SOLUTIONS 
As our empirical studies began to clarify the origin of problems 
with coordination and the resulting delay, we proposed and 
implemented technical and organizational solutions targeted to 
these difficulties.  I will focus here on two tools that saw 
significant use, and practices that arose with their use. 

3.1 Expertise Browser 
Finding someone with specific expertise – in tools, technologies, 
or parts of a product – is a serious problem in distributed 
organizations, and as our results showed, caused very substantial 
delays in accomplishing technical work. The amount of 
experience, i.e., the number of software changes accomplished 
with a given tool, technology, or in specific project part, can be 
used as a serviceable approximation of expertise.  This insight led 
to the design and development of the Expertise Browser (ExB) 
[5], a socio-technical visualization tool that was deployed and 
used by several GSD organizations.   

ExB used linked displays to show a hierarchical technical view of 
a software product (from subsystem to file), and a social view of 
the supervisors, developers, and organizations that performed the 
work. Clicking on some unit in the technical view, representing, 
e.g., a file or module, would produce a filtering and ordering of 
the people, organization, and supervisor views to reflect their 
relative contribution to the code unit.  Clicking on one of the 
social panes, e.g., a specific developer, would highlight in the 
code view the proportion of contributions that person had made to 
each visible unit of code.  Thus, the tool could be used to find an 
expert or to explore what work was performed by individuals or 
organizations.   

 
Figure 1. Expertise Browser user interface, with code units 

represented on the right and individuals, teams, and 
organizations on the left. 

Our logs showed that different sites tended to use the tool 
somewhat differently.  Smaller and newer sites tended to use ExB 
for locating experts, while older and more established sites 
seemed more often to use ExB to explore where other parts of the 
organization were working in the code.  We also found a strong 
desire for a view of recent activity, to enhance awareness of 
potentially conflicting work that other sites were doing, and for a 
“quantitative resume” that would give a profile of a developer’s 
work, including languages used, code volume, and organizations. 
Today, GitHub profiles provide highly developed visualizations of 
these kinds of information. 

3.2 Rear View Mirror 
In order to try to increase communication frequency and 
effectiveness, as well as addressing the absence of cross-site 
informal communication, we designed, built, and deployed an 
early social media application (or, depending on the definition of 
social media you prefer, a precursor to social media).  It combined 
person-to-person instant messaging, persistent group chat, and 
presence awareness (to see who was currently active).  We called 
it “Rear View Mirror” (RVM) to express the ambition that it 
would provide an unobtrusive but always available way for 
developers to see what was going on around them, especially at 
other sites. Our research focused on two different aspects of 
introducing RVM: patterns, issues, and tactics for adoption [4] 
and content analysis to indicate how it was used [3].   

While it is a bit hard to imagine now, chat still seemed fairly 
novel in 1999, especially in a work setting.  As we released the 
RVM application to several parts of the development 
organization, we spent two weeks with research team members at 
two different sites simultaneously training developers on the tool.  
For the initial deployment we chose pairs of developers who 
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seemed to have the greatest cross-site communication needs, in 
hopes of achieving a critical mass of users quickly.  The results 
were fairly disappointing, with about half using the tool initially, 
dropping off over several months to a steady 10%.  In addition to 
the typical problems of an alpha deployment, interviews revealed 
some interesting issues.  Our training strategy had not worked 
very well.  We concluded that we should focus on teams, not just 
pairs of people within an organization.  Where adoption 
happened, it was because a large share of a team began using the 
tool.  We also realized we needed to train teams together, since 
they needed not just to learn how the tool worked, but also how to 
collaborate with it. With some engineering work to address 
usability issues and a change to team-focused training, we were 
able to boost adoption to 40-50% of newly-trained teams.   

We also looked at what teams were actually talking about with 
RVM [3].  The popular press of the day was deeply suspicious of 
chat and messaging tools in the workplace (e.g., [15]), seeing 
them as a source of interruption and distraction.  While we did see 
small amounts of non-work content and occasional humor, the 
majority of messages (69%) were directed to accomplishing work. 
All the teams we examined showed a surprisingly consistent 
pattern of use, with very similar frequencies of the different types 
of messages. Since the tool maintained group message histories 
(for a limited duration), conversations were sometimes 
asynchronous, but most conversational turns happened in seconds 
or minutes.   Messages tended to occur in bursts, with some days 
showing extensive use, and others little or none.  Tool design 
involved several major tradeoffs, including avoiding intrusiveness 
versus timely notification, and customizable privacy settings 
versus setup time. All in all, RVM seemed to provide a means for 
a modest increase in communication across sites.  One can see 

Slack and other tools providing a rich set of team-based 
functionality within the enterprise. 

4. OPEN SOURCE: EXTREME GSD 
As we were studying GSD inside the enterprise, the open source 
movement began to get attention as a serious competitor to the 
commercial development paradigm.  Little was known at the time 
about how and why this extreme form of GSD seemed to work so 
well.  Popular articles (e.g., [16]) reveled in the lack of structured 
process and provided various maxims (e.g., “release early and 
often”). Economists wondered about the incentives that led to 
voluntary work without pay (e.g., [17]), but we could find no 
research explaining how fully distributed development could 
eschew standard coordination mechanisms such as management 
oversight, plans, and specifications, yet produce great products, 
while experiencing few of the profound problems of GSD.  
Colleagues and I set out to try to understand this puzzle by 
extracting and analyzing a detailed history of the Apache server, 
using archival analysis techniques developed by Audris Mockus, 
and with the help of insights provided by Apache Group founding 
member Roy Fielding [9, 18]. 

The story we uncovered had a number of dimensions, but 
interestingly, it turned out that different and differently sized 
groups of developers performed the basic software development 
functions in a way that made coordination possible.  A relatively 
small core group produced the vast majority of new functionality, 
while bug fixing was spread much more thinly across developers, 
and testing – i.e., submitting a bug report – was far more 
distributed yet.  So the highly interdependent work of developing 
new functionality was coordinated informally among a small team 
of a dozen or so developers, while the much less interdependent 
work of testing and fixing engaged large numbers of people.  
Meritocratic selection of core members with commit rights, self-
assigned release managers, mailing lists for communication, 
common ground in the form of a mutually understood (albeit 
informal) development process, and a voting mechanism for 
reaching decisions, together filled out the picture of how project 
coordination was achieved. Comparison to somewhat similar 
commercial projects hinted at impressive results: very high 
quality, rapid responses to problems, and high productivity [9].   

Our observations of Apache led us to construct seven hypotheses 
that were speculative generalizations arising from our reasoning 
about the research literature and why we observed what we did in 
our Apache case study.  For example, we speculated that in an 
open source project where the core group exceeded some 
threshold, perhaps 10-15 members, code ownership, not observed 
in Apache, would become necessary since larger groups would 
find it difficult to coordinate informally as a distributed team.  As 
another example, we also reasoned that open source projects with 
a strong core team but with little participation beyond the core 
will be able to create new functionality but will fail because of 
insufficient resources devoted to finding and fixing bugs.  As 
noted by Stol and Fitzgerald [19] the Apache case study was 
focused on the “substantive domain,” i.e., striving to understand 
the particular phenomenon of open source.  From the results, we 
developed what they aptly call “theory fragments,” which we then 
used to guide the design of a second, concept-driven, case study. 

We selected Mozilla as the subject of our theoretical replication, 
since it was very different from Apache on many dimensions, and 
would allow us to test a number of our hypotheses.  Mozilla was 
much larger, had a commercial origin, a small paid staff, a 
roadmap document for planning, test teams, and a formalized 
code review process.  Most of our hypotheses were supported; for 

 
Group    
Chat  
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Figure 2. The presence awareness (above) and chat windows 
of the Rear View Mirror user interface. 
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example, the Mozilla core team was much larger, and as expected, 
code ownership was enforced.  We also modified and extended 
our hypotheses, as we observed other coordination mechanisms 
such as required code review and a more explicit development 
process, were also present and helped the project function at scale. 
We suggested, based on these theory fragments, that some open 
source processes, such as open work assignments, might be 
beneficial in commercial environments. We had the chance to try 
out some of these ideas, which experienced modest success [20]. 

5. THEORY FORMULATION AND TEST 
Thus far, I have reported a collection of empirical studies aimed 
primarily at understanding a particular software development 
phenomenon: 
How do developers coordinate their work? 
Along with the empirical work on delay [13, 14] and open source 
[9, 18], tool interventions ([3-5]), as well as organizational models 
[6, 8] we achieved some level of understanding of how 
coordination was accomplished, when and how it failed, and 
deployed practices and tools to address the key practical question: 
How can we improve coordination and overall project success? 
The answers we found to both of these questions seemed like a bit 
of a hodgepodge. Many coordination techniques and tools were 
used, and it was clear that some organizations and teams were 
much more successful – and better coordinated – than others.  Yet 
there did not appear to be any tools or practices, alone or in 
combination, that seemed always to produce good results.  And 
while the various coordination mechanisms we explored seemed 
vaguely related, it was hard to express just how.  For example, 
detailed specifications seemed sometimes to reduce the need for 
explicit coordination, but not always.  A defined process 
sometimes seemed to improve communication, but there were 
exceptions.  RVM and ExB were taken up and used 
enthusiastically by some groups, who gave fairly glowing 
accounts of how helpful they were, while other groups tried them 
and quickly abandoned them, or declined to use them at all 
because they didn’t seem helpful.   

These experiences pointed to the need for a theory that could help 
explain the relationships between all of these coordination 
mechanisms, give some account of how they were in some sense 
all addressing the “same” problem, why they were sometimes 
helpful and sometimes not, and to formulate questions and 
predictions about why they might combine effectively, substitute 
for each other, or conflict.  This need for a unifying account led to 
our efforts to develop a theory of coordination in software 
engineering. 

5.1 The Need for Theory 
Theories, along with the empirical methods that lead to their 
development and testing, are the essence of science.  Historically, 
in software engineering, we recognized the need for evidence to 
evaluate the claims we make about the impact of our technical 
contributions (e.g., [21]) long before we realized the limitations of 
a validation-centric, theory-free approach to querying reality.  
Accreting the results of empirical tests of claims about specific 
engineering contributions does not by itself add up to broad and 
enduring knowledge.  It often seems to be the case that by the 
time we evaluate Development Tool A, and find it is superior 
under certain conditions to Development Tool B, someone has 
already proposed Development Tool C, and the evaluations of A 
and B do not, by themselves, give us any insight or evidence-
based expectations about C.   

When we concern ourselves with the question of how general our 
results are (i.e., their external validity), scientists tend to approach 
this in a handful of ways [22] (pp. 24-25), four of which are: 
generalize to cases that share some surface similarity, generalize 
across irrelevant differences, discriminate cases with relevant 
differences, and interpolate or extrapolate from known results.  
Each of these involves an implicit theory that informs the scientist 
of what dimensions of similarity matter, what conditions are 
irrelevant, what differences matter, and what observed cases say 
about those that lie between or outside them.  If the implicit 
theory is wrong, these approaches produce invalid generalizations.  
The problem with implicit theorizing is that the theory is never 
really exposed, discussed, tested, or even specified.   

The final and most substantial way of making a causal 
generalization is by means of an explicit theory that provides a 
causal explanation of the observations [22] (p. 25). The theory 
may not be fully articulated – theory fragments in Stol and 
Fitzgerald’s [19] helpful terminology – but to the extent it is made 
explicit and the relation of the empirical observations to the theory 
is clear, explicit theory provides a basis for generalization to cases 
to which the theory applies. The more support a theory accrues, 
the firmer the basis for such generalizations becomes. Further 
studies, of course, are also likely to find boundary conditions 
beyond which the theory does not hold, and lead to modifications 
or even rejection of the theory in favor of one that provides a 
better fit to the evidence.  
To inform the discussion that lies ahead, I’ll adopt a simple 
definition of theory, realizing that many treatises have been 
written on the topic, and it is notoriously full of subtleties and 
philosophical land mines.  For present purposes, it is enough to 
say a theory is (1) a set of constructs, or entities that enter into the 
theory, (2) a set of relationships that describe the ways in which 
the constructs are connected or interact, and (3) a causal story 
which explains how the constructs and relations give rise to 
observable phenomena of interest.  A theory that is complete in 
some sense should have all these parts.  Theories that are partly 
implicit and partly specified can be called theory fragments [19]. 
Scientists care about evidence, then, because of the support it 
provides (or does not provide) for a theory, i.e., it bears on 
whether a particular theory is true. More pragmatically, we might 
say that as evidence accumulates in favor of a theory: if we 
behave as if that theory were true we are less likely to be surprised 
by events in the theory’s domain than if we did not have the 
theory.  It makes the world more predictable by making it more 
understandable.  

5.2 A Socio-Technical Theory of 
Coordination (STTC) 
Building on prior theories of business process coordination [23, 
24], distributed cognition [25, 26], distributed artificial 
intelligence [27], and drawing theory fragments from work on 
geographically distributed engineering [2, 6, 9], Audris Mockus, 
Jeff Robertson and I formulated what I now call a socio-technical 
theory of coordination (STTC) [10, 11].   

In short, the theory conceives of coordination in software 
engineering as a distributed constraint satisfaction problem 
(DCSP) defined by the mutually-constraining engineering 
decisions for a project. People must organize to solve this 
problem by using capabilities and coordination mechanisms at 
their disposal.  The better the match of the solution with the 
project-specific DCSP, the more effectively the project will be 
coordinated. This, in turn, should lead to higher quality (fewer 
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bugs from uncaught constraint violations) and better productivity 
(less time spent reworking decisions that violated constraints). We 
refer to this degree of match between the coordination problem 
and the organization’s coordinating activities as congruence.   
The origin of the theory [11] lies in a key observation from 
Hutchins’s theory of distributed cognition [28]. In particular, we 
were inspired by Hutchins’s notion that many problems that teams 
solve collaboratively, like the problem of navigating a ship at sea, 
have an irreducible core. Navigation is grounded in geometry and 
physics, and this grounding is completely independent of any 
particular problem-solving mechanism. Problem-solving systems, 
consisting of humans, technology, and practices, can vary 
dramatically. These variations, however, can only be understood 
and compared once one grasps how they address the core 
problem. For example, Hutchins [28] compares the radically 
different ways that navigation problems can be solved by naval 
officers using modern equipment or Pacific islanders using an 
entirely different theory of navigation and virtually no equipment. 
Both systems “respect” the physics of navigation problems, but 
have entirely different conceptual systems, practices, and tools for 
addressing the problem.  

This view inspired us to try to characterize the “irreducible core” 
problem of coordination in software engineering, in order to see 
how different kinds of practices, tools, and processes are rooted in 
different ways of conceptualizing and addressing this core 
problem.  As is the case with ship navigation, coordination among 
agents can be accomplished in many ways, but each solution 
strategy has an irreducible grounding in the decisions embedded 
in engineering tasks and their interdependencies [11].  

Applying Yokoo’s (2001) formulation, a software project consists 
of a large set of engineering decisions that must be taken in order 
to complete the project. Decisions are represented as n variables 
x1, x2, . . . , xn whose values are taken from finite, discrete domains 
D1, D2, . . . , Dn. Assigning a value to a variable represents making 
the decision represented by that variable [11].  

A project has a set of constraints that operate over the variables 
that represent the engineering decisions. Given an assignment of a 
value for some variable, the constraints serve to limit possible 
values that can be assigned to other variables. Formally, 
constraints pk(xk1, xk2, . . . , xkn) can be represented as predicates 
defined on the Cartesian product Dk1 x Dk2 x . . . x Dkj. 
Successfully completing a project is equivalent to finding an 
assignment for all variables that satisfies all constraints.  [11]. 

In order to define a distributed constraint satisfaction problem, we 
define two relations (Yokoo 2001). Each variable xj belongs to 
one agent i, represented as the relation belongs(xj,i). In general, 
agents only know about a subset of the constraints. We can 
represent this relation as known(Pl, k), meaning agent k knows 
about constraint Pl [11]. 

Agents attempt to solve a DCSP by assigning values to variables 
and communicating with other agents.  There are many standard 
algorithms for solving DCSPs, and much is known about their 
complexity, completeness, soundness, and performance in various 
constraint landscapes (see Yokoo, 2001, for an overview).  Agent 
behaviors that give rise to these distributed algorithms differ in 
many ways, including what the agents communicate, when they 
communicate, with whom they communicate, how they decide the 
order in which to make decisions, and what they do when they 
discover a constraint violation.  Since it is these agent behaviors 
that enable and define the various algorithms, DCSP provides a 
way to think about the relationship between overall project 

performance and the individual behaviors and communication 
patterns that give rise to this performance [11]. 

Better organizational performance – higher productivity, shorter 
development times, and higher quality – should result when there 
is a better match between the particular DCSP presented by a the 
engineering work and the coordination strategies adopted and 
applied by the development organization. We call the degree of 
this match socio-technical congruence [29].  

5.3 Empirical Studies of Congruence  
In order to test this theory, one has to measure the degree of 
congruence in a large number of items of software development 
work, and empirically test whether work that is more congruent is 
accomplished more efficiently and with higher quality.  In this 
section, I provide a brief overview of how we accomplished this. 

In order to measure congruence, we needed to characterize the 
topology of the dependency network and the topology of the 
application of coordination mechanisms in ways that would allow 
the degree of congruence between them to be measured.  With 
respect to the dependency network, it is not feasible to try to fully 
capture all decisions and all constraints among them.  Developers 
often make a great many decisions each day, and a complete 
account of the ways in which each decision constrains all other 
decisions would be exceedingly difficult to construct.    

An appropriate aggregation of decisions, however, could perhaps 
provide a sufficient characterization to allow an empirical test. We 
could consider a file of source code to be a clump of decisions 
[10], each file being a node in an aggregated dependency network 
or undirected graph. Edges in the graph represent work 
dependencies between nodes, i.e., an edge between two nodes 
indicates that decisions in each node constrain, or have an effect 
[10] on decisions in the other node.   
The dependencies between nodes could be measured in several 
ways, for example call graphs or data dependencies, but we have 
found logical dependencies [30] to be effective for our purposes 
[31, 32]. It is convenient to use a matrix representation of the task 
dependency network, TD where rows and columns are nodes and 
cell entries are edge weights, reflecting a measure of logical 
dependency (i.e., the number of times two files have been 
changed together as part of the same work item [30]). With 
respect to the DCSP formulation, these dependencies provide an 
abstract representation of the set of predicates that express the 
constraints. 
A graph representing the assignment of decisions to developers 
can be constructed in analogous fashion, once again aggregating 
decisions to the level of files. We construct a task assignment 
matrix TA where each developer is a row i and each file is a 
column j, and the cell entry is the number of times developer i 
modified file j.  In DCSP terminology, this provides an aggregated 
representation of the belongs relation.   

The following matrix multiplication [29, 31, 33] allows us to 
construct a coordination requirements matrix, CR  

CR = TA * TD * TA
T 

where TA
T is the transpose of the task assignment matrix. CR is a 

square matrix where developers populate the rows i and columns 
k, and the cell entry reflects the extent to which developer i 
engages in work that has task dependencies with the work 
engaged in by developer k.   

Actual coordination, or the use of a particular coordination 
mechanism by a pair of developers, can also be represented as a 
square matrix CA where developers once again populate the rows 
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and columns, and each entry represents the extent of use of a 
particular mechanism by developer i and developer k. For our 
purposes, we have found binary cell values – a pair of developers 
did or did not use a particular coordination mechanism – to be 
sufficient. This is roughly equivalent to the known relation in the 
DCSP formulation – if two developers are actually employing a 
coordination mechanism, it is highly likely they know about the 
constraint. 

Congruence, or the degree of match between CR and CA, can be 
computed as the proportion of non-zero cells in CR that are 
matched by actual coordination, indicated by a non-zero cell in 
the same location in CA. Congruence can range from 0, if no non-
zero cell in CR is matched by a non-zero cell in CA, to 1, if every 
non-zero cell in CR is matched by a non-zero cell in CA.  

The final step is to compute congruence for a large number of 
work items and construct a statistical model to assess the degree 
of association between congruence and desirable outcomes, 
particularly quality and productivity, while controlling statistically 
for the many other variables that can impact these outcomes. We 
did this originally in one commercial development organization, 
using a multiple regression model to assess the impact of four 
different coordination mechanisms on development speed [29, 
34], and later assessing impact on code quality and replicating 
both results in a different commercial organization [33].    

This empirical work provides support for STTC, but it really just 
scratches the surface.  It has a number of important limitations.  It 
looked only at the match between the people who needed to 
coordinate and their use of four different coordination 
mechanisms.  It did not examine other coordination mechanisms 
(shared work history, offline communication, use of shared 
documentation, etc.) nor did it attempt to advance our 
understanding of what mechanisms are effective for what kinds of 
constraints.  In fact, many more questions are raised by this work 
than are answered (which I take to be a good thing for a theory!).   
Among the important questions: 

• Coding is just one of many engineering tasks. What do 
dependency networks look like in this larger set of tasks, and 
how can we compute coordination requirements? 

• Popular frameworks, libraries, and APIs undoubtedly impose 
structure on the task dependency networks of projects using 
them – can we capture this imposed structure and use it in 
various ways to facilitate coordination? 

• Projects extend through time, and as decisions are made, the 
decision network changes, perhaps radically.  What are these 
changes, and how can we recognize and accommodate this 
evolving structure with the coordination mechanisms at our 
disposal? 

• How early in a project can we usefully predict coordination 
requirements and how can we use this information in 
planning? 

• What is the full set of coordination techniques that 
development organizations can use? 

• Can different techniques substitute for each other, e.g., relax 
use of a defined process if advanced collaboration 
technologies are used? 

• How can we compose various coordination techniques to 
build a complete coordination solution for a given project? 

• Given that we can compute or predict coordination 
requirements, how do we match them with appropriate 
coordination techniques for a given project? 

• How do we know when it is appropriate to introduce 
particular coordination techniques to an ongoing project to 
address coordination issues, or to drop them when they are 
not needed? 

5.4 STTC and Transparency 
Social coding environments are introducing very substantial 
changes in how coordination happens, often accompanied by 
innovative processes, especially the continuous delivery model 
(see, e.g., [35]). In practice, continuous delivery often includes 
elements such as micro-service architectures, small teams, 
decentralized decision-making, requirements expressed as 
improving specific business metrics, and a DevOps approach to 
deployment [36].  There is also rapid growth in commercial use of 
open source software, which increasingly is developed and 
maintained in the context of a software ecosystem, or collection of 
related and interdependent projects (e.g., [37, 38].  
New environments and life cycle models impact the nature of the 
engineering decisions, the task interdependencies that define the 
coordination DCSP, and the organizational capabilities and 
coordination mechanisms available to solve it.   The constraints 
among engineering tasks that seem most critical from a 
coordination point of view are those that arise from dependencies 
among different repositories. A quick examination of 
dependencies in any sizeable project (e.g., by examining the 
package manager for the language in which the project is written) 
generally shows large numbers of dependencies, especially if one 
looks at the transitive closure. Since changes in any project one 
depends on, directly or indirectly, could impact one’s project (i.e., 
violate one or more constraints), and since these other projects are 
under the control of other developers who can change them at 
will, the situation is much less predictable than traditional 
commercial environments that use techniques such as 
roadmapping to help ensure that code changes do not break code 
that depends on them.   

In the face of constraints arising from widespread, diffuse, and 
largely “unmanaged” (in the traditional sense) dependencies, 
social coding environments are extremely useful. A central novel 
characteristic of these environments is transparency, or the 
“accurate observability, of an organization’s low-level activities, 
routines, behaviors, output, and performance” [39] p. 181).  
Transparency is key to coordinating work where decision-making 
is decentralized and developers take a large share of responsibility 
for creating and managing dependencies [40].  Social coding 
environments allow explicit social media style connections to 
repositories and people, capture a detailed history of development 
activity in a repository and its forks in ways that are readily 
browsed, searched, and shared. Asynchronous communication is 
supported through comments on artifacts. Contribution to external 
repositories and code review are made simpler by a pull request 
mechanism. These environments and the necessity of managing 
change have given rise to practices and policies that support a 
number of quite distinct styles of coordination based in a 
community’s values [41].  

In a qualitative study of developers using GitHub [40], we studied 
the kinds of decisions developers made and how they related to 
the information available in the environment and the activities of 
other developers.  We found that developers used several kinds of 
information in deciding whether to create a dependency on a 
project, including the recency and volume of activity, and whether 
pull requests were handled in a timely way.  They used signals of 
attention, such as number of watchers and forks, to gauge the 
quality and importance of a project. They attended to commits to 
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identify potentially contentious or troublesome commits that 
might break their code.  If breaking changes occurred, they often 
communicated with the owner of the breaking code, sometimes 
submitting a pull request to the external project to modify the 
code that was causing their problem.  

External code submissions, often to provide fixes or 
enhancements desired by the users of one’s code, presented the 
decision of whether to accept the code.  In a quantitative study of 
pull request acceptance [42], we found that both following 
technical norms (e.g., include test cases, keep changes small) and 
having a social connection (e.g., submitter follows pull request 
closer, previously submitted pull request) substantially increased 
the likelihood of acceptance.  Lengthy discussions, which often 
question either the intent or the solution quality of a pull request 
[43], sharply decreased the odds of acceptance, except when the 
submitter had a social connection with the project.   

In future work, we plan to move toward a congruence approach, 
as we identify the ways in breaking changes propagate across 
repository boundaries, to see if we can establish how the various 
kinds of coordination mechanisms (e.g., comments, subscriptions 
via watching and starring, observing changes in forks) match up 
with different technical coordination problems and how they 
impact outcomes.  

6. CONCLUSION 
Coordination is one of the fundamental problems of software 
engineering.  I have argued that it is a fundamentally socio-
technical phenomenon, where one must take into account both the 
technical dependencies among engineering tasks, which 
collectively define the problem, and the ways that people organize 
to find a solution.  This can be nicely characterized as a 
distributed constraint satisfaction problem, which I think captures 
the irreducible core of coordination in software engineering, 
allowing us to see the common underlying impact of all of the 
varied means of coordination, from software process and 
collaboration technology, to the coordination implications of 
traditional design strategies such as modular product structure and 
architectural styles. These are sets of practices with different 
underlying conceptual structures all addressing parts of the same 
irreducible core problem. 

I think it is clear that theory is necessary in order for us to take a 
scientific approach to understanding the complexity of the 
pervasive role of humans in software engineering. Progress will 
be fragmented and it will be very difficult to cumulate results into 
a deeper understanding, unless our research is grounded in theory.  
Mary Shaw, in her eloquent keynote talk at ICSE 2016, in 
assessing the progress of software engineering toward a true 
engineering discipline, noted that engineering is preferentially 
based in science.  The science we need, as I have argued 
elsewhere, [44], requires theory, and because of the fundamentally 
socio-technical nature of key phenomena, will also extend well 
into the human domain, being based as much on behavioral 
science as computer science.  
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